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Introduction

0 Four tire pressure categories (W /X /Y / Z2)
in ACN/PCN system (ICAO, 1981)
O W —no pressure limitation — high
o X -— 15 bars limitation — medium
O Y — 10 bars limitation — low
O Z-— 5 bars limitation — very low

o Current pavement capacity and new aircraft
generation are not considered

0 The use of W and X categories is not clearly
defined



e
Aircraft Tire Pressure Trend
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Effect of High Tire Pressure

0 High truck-tire pressure increases flexible
pavement damage. It is affected by
O Load and tire-pressure levels
O Pavement structure
O Response type
O Response location

0 Boeing high tire pressure test at FAA NAPTF
O High tire pressure @ 16.5 bars and 50-kip loading
O Rutting is found as the main failure mode

0o Airbus HTPT program



Mechanistic Analysis of Pavement
Responses

o Elastic layer theory is used in conventional
pavement design

o Limitations of elastic layer theory

o Static circular uniform pressure distribution is
Inconsistent with real tire loading

o Effects of tire speed and loading frequency are not
considered

o HMA viscoelasticity may not be fully considered
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Objective and Scope

2 Develop a 3-D FE pavement model under
aircraft tire loading

Q Simulation of tire loading
a Material characterization

a Analyze effects of contact stress and high tire
pressure on pavement responses

a Two tire pressure levels (also assuming different
contact stress distributions)

a Two different base supports
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3-D Finite Element Modeling

3-D FE model is used to capture

Non-uniform contact pressure

Moving tire load
Implicit dynamic analysis

Viscoelastic HMA layer

O O O O O 0O

Infinite boundaries




Element Size and Boundary Conditions

o Element vertical size:
o 9.5 mm for HMA layer
o 30-50 mm for base layer

o Element horizontal dimension:
o 10-20 mm in the transverse direction
o 40 mm in the longitudinal (moving) direction

o Infinite elements used to reduce degrees of
freedom and create “silent” boundaries

o Coulomb frictional interfaces are used



Model Verification
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Pavement Structure

Pavement section considered (FAA NAPTF)

127 mm HMA (P401) Viscoelastic
203 mm Crushed stone (P209)* E=518 MPa
152 mm Eco-concrete (P306) E=4830 MPa
813 mm Uncrushed stone (P154) E=276 MPa
77NN
Subgrade E=36 MPa

* P154 was also used to evaluate the effect of base support
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HMA Dynamic Modulus
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HMA Linear Viscoelasticity

0 Generalized Maxwell Solid Model: Consists of one
spring and n Maxwell elements connected in parallel

N by bxy bxy
E® =E,(1- Y E,(1-¢™™)) ‘ mv\;

Tl b
where, " =
E(t) is relaxation modulus;

E, is instantaneous modulus;

E, and 1, are Prony series parameters; and
t is relaxation time.

0 Relaxation modulus is converted from dynamic
modulus and expressed as Prony Series



Tire Deformation under Wheel Load
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Changes in Contact Pressure under
Loading (Truck Tire)
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Changes in Contact Pressure under
Loading (High Aircraft Tire Load)
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Uniform vs. Non-uniform Contact
Pressure Assumptions

0 A380 maximum takeoff weight: 560 tons
O Load on one main landing wheel: 260.68 kN

O Tire inflation pressures: 15 and 17 bars

h —
_:: ||
m
p = tire pressure Edge ribs : peak = 2.2 x tire pressure
W/L=0.6-0.7 Center ribs: peak = 1.1 x tire pressure

Uniform Non-uniform
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Moving Load Simulation
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"
Dynamic Analysis

a Aircraft tire loading

o Time (frequency)-dependent loading history

o Dynamic amplification depends on ratio of loading
frequency to pavement natural frequency

o Dynamic analysis consi the effects of
dmass inef{a anddamping force

[M U }+[CHU }+ 1K U } = {P}

o Implicit dynamic analysis was used
o More stable compared to explicit analysis

o Efficient for structural analysis with relatively longer
loading period




Critical Pavement Responses

a Mechanistic-Empirical pavement design
relates critical pavement responses at
specific locations to pavement damage
through transfer functions

a Critical responses considered in this study

a Tensile strain at the bottom of HMA layer causing
bottom-up fatigue cracking (relatively thin HMA)

a Shear strain/stress in the HMA layer causing
primary rutting and near-surface cracking



L

O Principal stresses rotate under a moving load

0 Loading time varies at various pavement depths
and directions
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Dpeth (mm)
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Transverse Distribution of Tensile
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Effect of Contact Pressure Distribution

(kPa)

Transverse _ _~no
tensile strain () 493 360 27% 624 482 23%
eIl 251 | 380 | +51% | 336 | 479 | +43%
tensile strain (p)
Shear strain (p) 541 735 +36% 680 815 +20%
Shear stress
707 1136 +61% 818 1251 +53%

(Tire pressure = 15 bar)
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Effect of Tire Pressure

(Using uniform contact pressure)

Transverse
tensile strain ()

493 522 +6% 624 660 +6%

Longitudinal

i : 251 317 +26% 336 412 +23%
tensile strain ()

Shear strain (4) | 541 597 +10% 680 714 +5%

Shear stress

707 1 16% 818 942 15%
(kPa) 0 819 +16% + o




Effect of Tire Pressure
(Using non-uniform contact pressure)

Transverse

(kPa)

: . 360 377 +5% 482 492 +2%
tensile strain ()
tongitudinal | 380 | 443 | +17% | 479 | 532 | +11%
tensile strain ()
Shear strain (M) | 735 811 +10% 815 893 +10%
h
Shearstress | a6 | 1307 | +15% | 1251 | 1428 | +14%
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Summary

0 The developed 3-D FE model can capture the
distributions of tensile and shear strains
under various moving tire loads

0 High aircraft tire pressure and non-uniform
contact stresses at tire-pavement interface
cause high shear strains/stresses in the
asphaltic mix layer

O Responsible for primary rutting and near-surface
cracking

O This requires high stability and shear strength asphalt
mixtures
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Summary (Cont’d)

0 Compared to uniform contact stresses, non-
uniform contact stresses under high aircraft
tire pressure results in
O Longitudinal tensile strain increase up to 50%

O Shear stress/strain increase up to 60%

0 The increase of tire pressure from 15 to 17
bars results in
O Tensile strain increase up to 20%
O Shear stress/strain increase up to 15%

These changes are contact stress distribution and
pavement layer stiffness dependednt
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