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ABSTRACT 

Sufficient bonding between the hot mix asphalt (HMA) layers is essential to ensure the 
desired structural capacity of a pavement. Delamination or debonding problems are particularly 
more severe on airfield pavements, due to higher traffic loads applied by aircrafts. Further 
progression of delamination may result in stripping of the lower layers due to the intrusion of 
moisture or may develop other dangerous distresses such as foreign object debris (FOD). Rapid 
nondestructive test (NDT) methods to determine the existence and extent of delamination in 
asphalt pavements are needed.  In this paper, the existing NDT procedures and equipment that 
have the potential to address the problem were identified and their effectiveness and potential for 
success were evaluated. The identified NDT methods, which included the Ground Penetrating 
Radar, Thermography, sonic/seismic and impulse response, were evaluated on a controlled 
pavement section that was specifically constructed with various levels of debonding at different 
depths and with different asphalt mixes. The theoretical and practical strength and limitations of 
different methods are discussed in this paper.   

INTRODUCTION 

Sufficient bonding between pavement layers is essential for achieving the desired bearing 
capacity of a pavement. A poor bond and the subsequent delamination or debonding between the 
surfacing layers reduces the serviceability and performance of a pavement. The lack of interface 
bonding may lead to several premature distresses of which slippage, cracking, delamination and 
distortion are most prominent. Undetected delamination can ultimately result in the peeling away 
of thin lifts from the surface of the roadway (Road Management & Engineering Journal [1]).   

Delamination in most cases occurs either at high temperatures or high loads (especially 
horizontal loads) or a combination of the two when there is a poor bond between the surface and 
binder courses, for example due to poor quality tack coat material or application.  Special 
attention has to be given to areas where horizontal loads are the largest. Delamination or 
debonding problems are particularly more severe on airfield pavements, due to higher traffic 
loads applied by aircrafts. This situation is more critical on runways at the high-speed taxiway 
exits, where airplanes brake and turn (Bognacki et al. [2]), or at areas under large horizontal load 
of aircraft at takeoff, creating slippage due to inadequate bonding between the top layer and the 
layer below. Jet blasts can particularly complicate the problem by converting fragments of the 
delaminated layer into foreign object debris (FOD). Moreover, the delaminated layers and their 
associated cracks may require frequent maintenance, and may lead to premature need for major 
rehabilitation. For those reasons, rapid detection of delamination with NDT devices is desirable.  

The objective of this paper is to evaluate the feasibility of estimating the presence and extent 
of HMA delamination with NDT methods. Selected NDT equipment and procedures that deemed 
capable of locating areas of delamination were tested and conclusions on their applicability were 
drawn. Four NDT methods were evaluated on a pavement section specifically constructed for 
this study. Several debonding agents were placed between different asphalt lifts at predetermined 
locations to simulate different degrees of debonding within the pavement.  

In this paper, a brief literature review on the selected NDT methods for detection of 
delamination in HMA pavements is introduced. The pavement section constructed for this study 
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is described. Results obtained with selected NDT methods and the summary and conclusions of 
this study are presented.   

NDT METHODS FOR DETECTING DELAMINATION OF HMA 

A number of NDT technologies have been developed that can be potentially employed for 
detection of delamination within HMA layers. Most of these technologies have been used 
extensively for detecting the delamination in portland cement concrete (PCC) slabs. However, 
several complicating factors have to be addressed in applying these methods to HMA. These 
complications included the following items: 

• PCC slabs are typically placed in thicker lifts than HMA layers,  
• the cement paste generates an almost homogenous layer as opposed to the HMA that is 

essentially a particulate matter,  
• the tack coat at the interface of successive HMA layer may act as a weak bonding agent, 

complicating the detection of debonding, and  
• changes in temperature play a key role in the measured mechanical properties of HMA 

layers as well as the adhesion characteristics of tack coat that may affect the results.   

The following four NDT methods that were considered most promising were preliminary 
evaluated in this study: 1) Ground Penetrating Radar (GPR), 2) Impulse Response (IR), 3) 
Ultrasonic Surface Waves (USW) and 4) Thermography. Even though not reported here for the 
sake of brevity, a Falling Weight Deflectometer (FWD) was also utilized. The results from FWD 
test were encouraging as discussed in Celaya et al. [3]. A brief description of each method is 
provided next.  

Ground Penetrating Radar (GPR) 

GPR is a geophysical nondestructive technique that uses electromagnetic pulses to test, 
characterize, or detect subsurface materials based on changes in electromagnetic properties of the 
subsurface layers. GPR has been extensively used for measuring pavement layer thicknesses 
(ASTM D4748), locating changes and anomalies in pavement structures, detecting voids under 
concrete slabs, locating reinforcement and dowels in jointed concrete pavements, and moisture 
damage (stripping) in asphalt pavements. The main advantage of the GPR is the speed of the 
operation and almost full-coverage of the pavement section. However, the application of GPR in 
detecting delamination has been found to be questionable. Even at frequencies of 1 to 2 GHz, the 
GPR wavelengths in asphalt are too long to resolve the thin delamination (Maser [4]). Numerical 
modeling of the GPR signals for detecting delaminated asphalt carried out by Smith and Scullion 
[5] indicated that the detection of an air-filled delamination of 0.2 in. thick or water-filled 
delamination of 0.1 in. and thicker at a minimum depth of 2 in. may be detectable using a 2.5 
GHz GPR antenna at a maximum speed for data acquisition of 10 mph.   

The test setup used in this study is shown in Figure 1. The equipment used consisted of a 
GSSI SIR-20 (SIRveyor) two-channel data acquisition unit controlled by a laptop computer, a 
1.5 GHz ground-coupled antenna (GSSI Model 5100), and a survey wheel attached to the 
antenna. The maximum depth of penetration of this antenna is about 1.5 ft depending on the 
dielectric properties of the pavement. 
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Figure 1. GSSI Model 5100 GPR System Used in This Study 

 
Impulse Response (IR) Method 

In the IR method, the deformation of the pavement is measured due to a known load. The 
basic operating principle of the method is to apply an impulsive loading to the pavement surface 
with an instrumented hammer and to measure the vertical displacement using a geophone. The 
impulse duration of less than 1 msec would result in predominant vibration of the top layer. If 
structural distresses are present in the form of loss of adhesion between pavement layers, this is 
reflected in the dynamic response of the pavement structure. By performing a simple modal 
analysis (Nazarian et al. [6]), the bonding condition of two adjacent layers can be determined. 
The same principle has been employed in several research studies aiming at characterizing the 
bond conditions below thin HMA surfacing (Lepert et al. [7]).  Kruntcheva et al. [8] successfully 
implemented this method for detection of debonding in controlled test sections. The equipment 
used in this study is shown in Figure 2. A 10-lb (45 N) hammer instrumented with a load cell and 
a 4.5-Hz geophone were used. Both the hammer and the receiver were connected to a portable 
field computer for data acquisition and storage.  

Data 
Acquisition

Laptop

  

Hammer

Geophone
 

Figure 2. Impulse Response Test Setup 
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Ultrasonic Surface Waves (USW) 

The USW is a seismic-based method, in which the variation in the velocity with wavelength 
is measured to generate a so-called dispersion curve. For two layers with similar modulus 
bonded together, the variation in modulus with wavelength is more or less constant. However, 
when the two layers are debonded, the modulus will decrease significantly with wavelength 
below the interface of the two layers. This method has been successfully used in forensic studies 
to detect HMA stripping (Hammons et al. [9]). The Portable Seismic Property Analyzer (PSPA) 
was used in this study.  The PSPA (see Figure 3), which determines the variation in modulus 
with depth of the exposed layer in the field, consists of two ultrasonic sensors or transducers and 
a source packaged into a hand-portable system using the USW method (Nazarian et al. [10]). The 
PSPA is operable from a laptop computer. The computer is tethered to the hand-carried 
transducer unit through a cable that carries power to the hammer and transducers and returns the 
measured signals to the data acquisition board in the computer. The outputs of the two 
transducers are subjected to signal processing and spectral analyses. In the USW method, the 
surface or Rayleigh wave velocity, VR, is measured without an inversion algorithm. After VR is 
measured, the modulus of the top layer, Efield, can be determined from (Nazarian et al. [10]).   

( )[ ] ( )ννρ +−= 116.013.12 2
Rfield VE  (1) 

where ρ is mass density, and ν is Poisson's ratio.  

Source

Near Receiver

Far Receiver

 
Figure 3. PSPA Detail 

 
Thermography Method 

Infrared Thermography measures temperature distributions across the surface of the 
pavement to detect the presence of shallow subsurface flaws in HMA. The surface of the 
pavement over a delaminated area exhibits a temperature gradient with respect to its surrounding 
fully-bonded area (Maser [11]). Stroup-Gardiner and Brown [12] showed that temperature 
differentials measured by thermography were also impacted by the changes in the properties of 
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the finished mat (such as air void content and gradation) that may negatively impact the 
reliability of this technology for the detection of delamination. Thermography has been used for 
detection of shallow delamination in HMA airfield pavements by Tsubokawa et al. [13] and 
Moropoulou et al. [14]. Both studies concluded the effectiveness of thermography for large areal 
inspection but also reported a number of limitations in term of its high sensitivity to ambient 
environmental and surface conditions such as solar radiations, air temperature, wind speeds, 
surface texture, the external debris, shadow zones, etc.  An InfraCAM™ SD from FLIR systems 
was used in this study as shown in Figure 4. The camera collects thermal images of a surface 
area of approximately 2 ft by 2 ft (0.6 m by 0.6 mm) when the camera is used at a height of 
approximately 4 ft (1.2 m) from the surface. The operator aims a laser pointer to the surface of 
the pavement and collects and stores an image of 240x240 pixels.  

     
Figure 4. Infrared Camera Used on This Study 

 
CASE STUDY 

Ten different sections were constructed specifically for this study as depicted in Figure 5. 
Each section was 9 ft long (2.7 m) by 10 ft (3 m) wide. Three transition zones were incorporated 
to minimize the variability of the laid down mix during construction. The pavement cross-section 
for all sections consisted of a prepared sandy-silt subgrade and about 8 in. (200 mm) of HMA 
placed in three lifts. The bottom lift consisted of about 3 in. (75 mm) of a coarse (P-403) mix and 
the middle lift 2.5 in. (63 mm) of a fine (P-401) mix. The top lift of Sections 1 through 5 
consisted of a coarse mix (P-403 mix) and Sections 6 through 10 a fine mix (P-401 mix).   

A typical plan view of each section and test locations are depicted in Figure 6. A 4 ft (1.2 m) 
by 9 ft (3 m) area for each section was intentionally debonded. In addition, smaller debonded 
areas were constructed to test the detectability threshold of the methods. For the study reported 
here, the focus was more on the 4 ft by 9 ft debonded areas.   

To establish the suitability of different materials to be used as debonding agents, a series of 
direct shear tests were conducted. Clay slurry, talcum powder, grease and thin paper soaked in 
motor oil were considered. A tack coat in compliance with Item P-603 at a rate of 0.14 g/yd2 (0.7  
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Figure 5. Schematic of Small Scale Section Constructed for this Study. 
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Figure 6. Location of Test Points for a Given Section. 

 
lit/m2) was used as the control bonding agent. The shear strengths measured for each bonding 
agent are presented in Table 1. Two sets of specimens were prepared. One set consisted of the P-
403 mix as the bottom lift and the P-401 mix as the top lift. The other set comprised of two lifts 
of the P-401 mix. For both sets of specimens, the highest bond strengths were associated with the 
tack coat (about 33 psi, 220 kPa), and the lowest with a thin paper soaked in motor oil (about 5 
psi, 35 kPa). The coefficients of variation (COVs) of the shear strengths are rather high which 
can be explained by the shear resistance from aggregate interaction.  Based on the shear strength 
results, sections constructed with the tack coat were considered as fully-bonded. The sections 
with the clay slurry, talcum powder and grease were considered as partially-debonded, and those 
with oily paper as fully-debonded. A severely debonded area was reproduced in the transition 
area by placing a 4 by 4 ft (1.2 m by 1.2 m) piece of thick corrugated cardboard and a thick layer 
of clay slurry of 4 by 6 ft (1.2 m by 1.8 m) as shown in Figure 5. The characteristics of the 
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sections are summarized in Table 2. Shallow and deep correspond to the debonding between the 
top two lifts (at a depth of 2.5 in.) and bottom two lifts (a depth of 5 in.), respectively.   

Table 1. Shear Strengths (in psi) for Laboratory Prepared Specimens. 
P-401/P-401 Mixes P-403/P-401 Mixes 
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Average 35 20 22 19 5 32 17 27 5 

COV 36% 51% 75% 19% 34% 24% 5% 19% 47% 

 
Table 2. Characteristics of Sections Used in This Study. 

Debonding Agent 

Section** 

Su
rf
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e 
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Designation 
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y 
Sl
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m

 
Po

w
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r 
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r 
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1, 6 Control √     

2, 7 Shallow Partially-Debonded  √ √   

3, 8 Shallow Fully-Debonded    √ * √ 

4, 9 Deep Partially-Debonded  √ √   

5, 10 

C
oa

rs
e 

M
ix

 

Deep Fully-Debonded    √ * √ 
* Partially-Debonded  
** Sections 1 through 5 with Coarse Surface Mix and Sections 6 through 10 with Fine Surface Mix 

PRESENTATION OF RESULTS 

Ground Penetrating Radar  

The linescans with the GPR system along Lines 1 (intact line) and 5 (containing debonded 
areas) along with the locations of the prepared debonding are shown in Figure 7. The interfaces 
of different HMA lifts are also shown. The reflections from the debonded areas should be easily 
observable because of the higher reflection amplitudes. The GPR detected the severely debonded 
area within the transition zone and some debonded areas primarily constructed on talcum powder 
or clay perhaps because of the significant contrasts in their dielectric constants and HMA. This 
indicates that the GPR may be most suitable when the debonding is in severe stages or when 
moisture is present along the interface of the debonded layers. 
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Figure 7. Linescans with Ground-coupled GPR along Line 1 (Intact) and Line 5 (Debonded). 

 
Impulse Response 

An example of two test results on a sound and severely debonded area are shown in Figure 8. 
The voltage amplitude of the geophone for the severe debonded area was around three to four 
times as large as compared to the intact location and also much wider, while the amplitude of the 
load remained similar (see Figures 8a and 8c). The ratio between the load cell and geophone 
amplitudes can be used initially because of its simplicity where smaller ratio corresponds to 
greater flexibility of the section and therefore debonded locations. A more appropriate but 
slightly more complicated analysis consisted on determining the frequency responses using a 
Fast-Fourier Transform (FFT) algorithm as presented in Figures 8b and 8d. For the intact 
location the amplitude presented a dominant frequency of 300 Hz with amplitude of 4.5 and for 
the severe debonded the frequency was erratic and the maximum amplitude was close to 30. The 
ratio of the maximum values of the FFT amplitudes (stiffness) was used to compare the results.   

In this study, it was found that temperature at the time of testing greatly affected the outcome of 
this method in terms of FFT amplitudes. Therefore, several points were tested repeatedly at 
different times corresponding to different temperatures. The temperature adjustment relationship 
for Sections 1 and 6 are presented in Figure 9.  The general equation to adjust stiffness is: 

 
69.1009.077 +⋅−

= °
° T

FFTFFT FT
F  (1) 

This relationship is very site specific and need to be developed for each site to be tested. 
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Figure 8. Time Records and FFT Results from IR Examples on Small Scale Study. 
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Figure 9. Influence of Temperature on IR FFT Amplitude Ratios (Stiffness). 
 

The temperature adjusted stiffnesses were compared using color-coding in Figure 10. The 
average stiffness (Econtrol) and standard deviation (σcontrol) of each control section (1 and 6) were 
used as reference. Stiffnesses above the average minus one standard deviation are colored as 
green, between average minus one and average minus two standard deviations are highlighted in 
yellow, and less than average minus two standard deviations are colored as red. In this case most 
of the fully debonded points along lines 4 and 5 were identified for both mixes. Some partially 
debonded areas showed indication of marginally less stiff (marked as yellow), but some were 
found to be intact (green) or substantially less stiff (red). Most of the intact locations (line 1 and 
sections 1 and 6) were identified as intact. Based on these preliminary results, the IR method 
seems promising for the detection of the fully-debonded areas both shallow and deep and some 
of the partially-debonded areas.   
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Figure 10. Representation of the Impulse Response Results. 
 
Ultrasonic Surface Waves (USW) Method 

The PSPA USW analysis pages as seen by the operator in the field are shown in Figure 11 
for the intact and severely debonded locations. The top graphs demonstrate the variation in 
modulus with wavelength (called dispersion curves). The dispersion curve for the intact area is 
fairly uniform; whereas for the damaged point a sharp decrease in modulus below a wavelength 
of 2.5 in. (63 mm, the location of the damage) is evident. The vertical red lines in the graphs 
demonstrate the average moduli of the HMA layer from close to surface (1 in., 25 mm) to 8 in. 
(200 mm, nominal thickness of the layer). As reflected in the left hand side of the two graphs, the 
average moduli are about 1500 ksi (10 GPa) for the intact and 1130 ksi (7.8 GPa) for the 
severely-debonded areas.   

The variation in the average moduli along the ten sections is color-coded in Figure 12 using 
the criteria used for the IR tests. Since HMA modulus is temperature dependent, the values 
presented were converted to a reference temperature of 77ºF using (Li and Nazarian, [15]):   
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Figure 11. Dispersion Curve Results with PSPA. 
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b) Sections 6 to 10 

Figure 12. Statistical Analysis of PSPA Modulus on Small Scale Study. 
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In Figure 12a (representing coarse surface mix) an area from the right hand side of Section 2 
until the end of Section 5 generally exhibits lower moduli as anticipated. However, parts of 
Sections 2 and 4, both located on partially debonded sections, exhibit normal moduli. Similar 
trends are observed for the fine surface HMA sections (Figure 12b). However, the deep 
debonding is not as well defined as for the similar sections with coarse surface HMA.   

Detailed dispersion curves for Line 1 (intact) and Line 5 (primarily debonded) along the ten 
sections are presented in Figure 13 with prepared debonded areas marked when applicable. 
Reductions in modulus can be observed in most sections below depths of prepared debonding 
except for section 9 along Line 5 (deep partially-debonded section). Along Line 1, some 
reduction in modulus with depth is also observed, but to a much lesser extent than on the 
debonded areas, which can be attributed to the quality of the lower HMA layers. This 
demonstrates that the USW method might be able to identify delaminated areas reasonably well, 
especially the shallow ones. 
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b) Line 5 (Primarily Debonded) 

Figure 13. Dispersion Curve Results for Lines 1 and 5. 
 
Thermography 

A combined image around the severely deboned area is shown in Figure 14. A passive source 
(sunlight) was used to create the temperature differentials on the surface. The hotter areas 
(depicted in white) correspond to the area on top of the severe debonding. The same procedure 
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was applied to collect the data on the ten sections. A total of 25 pictures were obtained on each 
section at the predetermined locations as shown in Figure 15. Only the severely debonded area 
within the transition zone was clearly detected by the infrared camera. The results of this method 
were not very encouraging. A more sensitive camera (with precision of better than 0.1 degree) 
may provide more reasonable results.   

Severe 
Debonding

 
Figure 14. Infrared Camera Results on Severe Debonded Area. 
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b) Sections 6 to 10 

Figure 15. Infrared Camera Results on Small Scale Study. 
 
CONCLUSIONS 

Several NDT procedures and equipment that have the potential to detect the debonding of the 
HMA were evaluated. The NDT methods considered included the Ground Penetrating Radar, 
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impulse response, sonic/seismic, Thermography and the Falling Weight Deflectometer (FWD). 
A pavement section specifically constructed with various levels of debonding at different depths 
and with different asphalt mixes were used for this purpose. These five methods detected a 
severely debonded section well. Based on the outcome of the study, the following statements can 
be made: 

• GPR could detect 33% of the debonded areas, primarily when talcum powder or clay was 
used as the debonding agent. GPR could be used as a qualitatively method to identify 
severely debonded areas, especially in the presence of moisture.   

• The impulse-response method could detect about 59% of the debonded areas with the 
majority of defects detected were the fully-debonded areas (both shallow and deep). This 
method was the most successful in terms of detecting the fully-debonded defects. 

• The USW method as implemented in the PSPA could detect 53% of the debonded areas. 
PSPA could detect the shallow debonding (both partial and full) the best.  

• The thermography was not as successful in these experiments as reported in the literature. 
This method could only detect the severely debonded area in the transition.  

• The FWD, even though not discussed here, could detect about 46% of the debonded areas 
based on the backcalculation of the modulus of the HMA layer. 

• The IR, FWD and USW methods require temperature adjustments for their success.  
Approximate temperature adjustment relationships exist for the USW and FWD methods.  
However, for the IR a site specific temperature adjustment protocol may be needed. 

A more comprehensive study with more data points and considering the environmental 
parameters (such as temperature) and the detectability threshold of the methods are underway 
that will be discussed in the future papers.   
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