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ABSTRACT: A falling weight deflectometer (FWD) is commonly utilized to make structural 
evaluation of pavement systems, which applies impulsive force at a surface of pavement and 
measure surface deflections. Static back-calculation employs only peak force and peak deflections, 
while dynamic back calculation uses time histories of both.    
Since dynamic analysis of elastic multi-layered systems required in its back-calculation routine of 
the latter method is extremely time consuming, reducing computational time required for the 
dynamic analysis is very important. Dynamic reduction analysis method based on Ritz vectors is 
implemented in the algorithm. In both back-calculation routines, truncated singular value 
decomposition technique is introduced to improve numerical stability. The results from both 
methods are presented and discussed. 
 
Keywords: dynamic back-calculation, static back-calculation, truncated singular value 
decomposition, FWD 
 
 
1. INTRODUCTION 
 
Falling weight deflectometer (called FWD hereafter) has become a de facto standard 
nondestructive testing device for pavement and more than three hundred FWDs are now in 
operation over the world. FWD applies an impulsive force at pavement surface and measures 
surface deflections at several locations including a point of loading. 

There are three methods for structural evaluation from FWD data. The first and simplest 
approach utilizes only peak surface deflections at a few selected points without back-calculation. 
The second is static back-calculation which estimates layer moduli from peak values of both force 
and deflection data by an iterative method. The solution may not be unique. The third is dynamic 
back-calculation which determines layer moduli so as to match computed deflection histories with 
measured ones (1)-(4).  

The first approach is empirical, often used in practice but does not have a sound theoretical 
basis. The second is the method to obtain layer moduli which match both measured and computed 
peak surface deflections, considering the measured peak deflections as pseudo-static deflections. 
This method is most commonly used but it has been known that the method often leads to 
erroneous results. It seems that this discrepancy is greatly caused by the difference between the 
actual phenomenon and the analysis model in addition to numerical instability.  

A back-calculation method is composed of forward and backward analyses. Axi-symmetric 
analysis of multi-layered elastic systems called AAMES (5) is implemented in static 
back-calculation and FEM is employed in dynamic back-calculation.  Back-calculation is in 
general unstable and requires some sort of regularization (6) and (7). We herein use the 
Gauss-Newton method with truncated singular value decomposition for both static and dynamic 
back-calculation. Assuming the initial values of parameters to be identified, the method iteratively 
updates their values until convergence is achieved.  

This paper presents the results of back-calculation from the both methods and gives some 
discussions. 
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2. BACK-CALCULATION 
2.1 Gauss-Newton method with regularization 
The solution to this problem requires finding parameter values which measured responses match 
computed responses. This is so called a non-linear least square problem. Let )(Xu and *u  be 

1×N vectors of computed and measured responses. Then, the non-linear least square functional can 
be written as 
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J                                    (1) 

 
in which X  is a 1×M vector of unknown parameters. The value of X  which minimizes equation 
(1) is the one we want to find. Since this is a non-linear minimization problem, an iterative 
approach needs to be employed. Using Gauss-Newton method, iterative algorithm can be derived 
as 
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A  is a MM ×  matrix, and b  and Xd  are 1×M  vectors. Equation (2) is called a normal equation. 
Assuming an initial value of X , A  and b  can be computed. Although equation (2) is a system of 
linear equations, it has to be solved with care because of its unstable nature. In order to cope this 
instability, singular value decomposition is utilized. Considering a symmetry of A , A  can be 
decomposed and written as 
 

                   DVVA T=                                      (6) 
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where D  is a diagonal matrix composed of diagonal elements called singular values and 
 

                  IVVVV == TT .                                 (7) 

 
Then, the solution Xd  can be written as 
 

                  bVDVX 1−= Td .                                  (8) 

 
If a diagonal element iid  is smaller than a threshold value, iid/1  is taken as zero in the computation 
of Xd . Equations (3) and (4) require the sensitivity computation of response vector. In case of 
static back-calculation, the surface deflections are computed by AAMES and the sensitivity of the 
deflections by the same software with a finite difference method.  In case of dynamic 
back-calculation, the response becomes time dependent vector, Equations (3) and (4) have to be 
integrated over a time domain, which can be numerically carried out. The dynamic and sensitivity 
analyses required in the computation of Equations (3) and (4) are made by using a finite element 
method.  
.  
2.2 Efficient dynamic analysis 
A mathematical model for dynamic analysis of pavement due to impulsive force is formulated 
based on a finite element model with 20 node isoparametric elements. It usually results in large 
degrees of freedom and computational time becomes enormous particularly when the system of 
equations has to be repeatedly solved. To improve computational efficiency, Ritz vector reduction 
method proposed by Wilson et al. is employed. Using Ritz matrix composed of Ritz vectors (6), 
the reduced system of equation of motion can be written as 
 

)()()()( tgttt **** fzKzCzM =++ &&&                          (9) 
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where T

L tztztzt )](),...,(),([)( 21=z  is reduced response vector, and )(tz& and )(tz&& in Equation (9) 

are the velocity and acceleration vectors of the reduced system. ** ,CM and *K  are the reduced 
mass, damping and stiffness matrices and their size is LL× , and *f  is reduced loading vector. The 
reduced mass matrix *M  can be expressed as a unit matrix, and other reduced matrices *C  and 

*K  are symmetric but not diagonal.  
If the damping matrix is non-proportional, *M , *C  and *K  can not be simultaneously 

transformed into diagonal matrices. Thus, the equation can be rewritten as a system of  first order 
differential equations: 
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Since ** ,CM  and *K  are LL×  symmetric matrices, A  and B are LL 22 ×  symmetric matrices, 
and yy,&  and 0f  are 12 ×L  vectors. Equation (10) can be solved by a complex mode super 
position method.  
The s -th mode solution of Equation (10) can be written as t

ss
sett λ)()( vy = . Inserting this 

equation into Equation (10) yields 
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The above is referred to as an eigenvalue problem. Thus, sλ  and sv )2,...,2,1( Ls =  are an 
eigenvalue and eigenvectors, where the subscript s implies s -th mode. These eigenvalues and 
eigenvectors are complex, and sv  is the s -th vector composed of displacement and velocity 
modes. However, their eigenvalues and eigenvectors become conjugate, because A  and B  are 
real. Due to the orthogonality of eigenvectors sv , the following relationship must hold between 
the s -th and the r -th modes, 
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If the mode superposition is applied to Equation (10), the solution )(ty  can be written as 
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Substituting Equation (16) into Equation (10), pre-multiplying the resulting equations by T

sv  and 
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using the orthogonality of eigenvector sv  from A  and B , the following relationships are 
obtained: 
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Similarly, pre-multiplying Equation (13) by T
sv  and considering the orthogonality, 
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Then the following first order differential equation can be obtained: 
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If )(tg  can be expressed in a piece-wise linear form, it can be written as 
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between nt  and ttt nn ∆+=+ 1 .  The solution of equation (22) can be expressed as the following 
recurrence formula: 
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The solution of Equation (11) at 1+= ntt , one can write as follows: 
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The above equation gives both the velocity and displacement response in a complex form. 
Pre-multiplying by Ritz vectors and taking a real part, the surface deflection is easily obtained.  
 
2.3 Sensitivity analysis 
Back-calculation requires sensitivity of response with respect to unknown parameters. The 
sensitivity can be computed from the following reduced sensitivity equation: 
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From equation (26), initial conditions )0( =t  are: 
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The solution of equation (26) can be written similarly to that of Equation (9). After the sensitivity 
is computed, the sensitivity of surface deflections with respect to jX  can be obtained by 
pre-multiplying the Ritz matrix. 
 
3. NUMBER OF DEFLECTION DATA AND BACK-CALCULATED RESULTS 
 
In case of static back-calculation, the number of deflectometers must be greater or equal to the 
number of unknown parameters. Dynamic back-calculation, however, does not require this 
condition. Choosing a four layer model as shown in Figure 1, we examined how the number of 
deflectometers affects back-calculated results. The number of deflectometers and their locations 
used for back-calculation are described in Table 1. In the dynamic back-calculation , unknown 
parameters chosen are layer modulus iE  and damping coefficient iC  . The damping matrix is 
formed by replacing a layer modulus iE  in the stiffness matrix by iC , which is herein called a layer 
damping coefficient. They are regarded as independent parameters in this study, the total number 
of unknowns become eight in case of a four layer system. Initial values of layer moduli are 
6000MPa, 500MPa, 200MPa and 60MPa and those of damping coefficients are chosen as 5% of 
corresponding layer moduli.  
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Back-calculated results are presented in Table 2. It is found from the table that as many as 
eight parameters can be identified from deflection measurement at only one location, when 
dynamic back-calculation is conducted. It implies that the time dependent deflection contains 
more information than static deflection. 

Figure 2 shows the comparison of measured deflections and computed deflections after 
unknown parameters are identified. In Figure 2(a), computed D60 deflection is sought to match 
with measured D60 deflection, while other deflections are disregarded when estimating the 
unknown parameters. Thus, only D60 deflections of calculated and measured among others show 
good agreement. When three deflections are sought to match as in the case 4 of Table 1, those 
deflections of computed and measured agree well, but other responses do not show good 
coincidence. If all measured and computed deflections are used for identification, all responses 
demonstrate reasonably good agreement. These facts indicate non-uniqueness of the pavement 
back-calculation problem. 

 
 

E3, C3, ν=0.35, h3=182mm

E4, C4, ν=0.4

E1, C1, ν=0.35, h1=246mm

E2, C2, ν=0.35, h2=153mm

Figure 1 Four layer pavement profile 

case Deflections a

1 D0
2 D60
3 D90
4 D0, D30, D60
5 D0, D30, D60, D90, D120
6 D0, D30, D45, D60, D90, D120, D150

aThe number after D indicates the distance in cm
from the center of loading plate

Table 1 Deflections used for back-calculation
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Case No. of Itr. Layer1 Layer2 Layer3 Layer4 Eq.(1)
9071 637 172 26
5.18 0.384 0.116 0.040

7209 581 182 42
3.85 0.288 0.091 0.035

6541 481 149 51
3.23 0.239 0.076 0.030

7411 557 155 37
5.12 0.378 0.117 0.045
5221 573 158 53
7.06 0.515 0.161 0.019
6525 582 130 53
6.62 0.492 0.156 0.022

1

2

15

8

5.74E-04

3.37E-04

Table 2 Back-calculated resultsa,b

3

4

5

6

4

11

20

19
aUpper number is a layer modulus in MPa
bLower number is a damping coeffcient in Ns/m2

2.58E-04

3.35E-04

1.40E-04

1.47E-04
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Figure 2 Comparison of measured and computed deflections
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4. COMPARISON BETWEEN STATIC AND BACK-CALCULATED RESULTS 
 
Joint FWD test was conducted on March 29-31, 1993 at Japan Public Work Institute. Sixteen 
FWDs took part in the test at a roller compacted concrete pavement (RCCP). The pavement profile 
is illustrated in the Figure 3. The base M-30 refers to a mechanically stabilized layer with 
maximum grain size of 30mm and C-40 means a crusher-run with maximum size of 40mm. 
 
 

 
All FWD participated in the test are manufactured by KUAB. Static and dynamic 
back-calculations are carried out on measured deflection data. In the static back-calculation, we 
utilized the peak force and peak deflections of the time dependent data. The layer moduli from 
static back-calculation as well as the layer moduli and the corresponding layer damping 
coefficients from dynamic back-calculation are illustrated in Figure 4. FWD5 and FWD6 are 
falling weight deflectometors for airport facility with a loading plate diameter of 45cm. These  
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Figure 4 Comparison of Static and Dynamic Back-Calculation Results (a) Static Back-Calculation 

RCCP, ν=0.2, h1=20cm 

M-30, ν=0.35, h2

C-40, ν=0.35, h3=25cm

Subgrade, ν=0.35

Figure 3 RCCP Pavement Profile 
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(b) Dynamic Back-Calculation (Layer Modulus) 
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(b) Dynamic Back-Calculation (Layer Damping Coefficient) 

 
Figure 4 (Continued) Comparison of Static and Dynamic Back-Calculation Results 

 
two FWDs applied a peak force of about 176kN to the pavement, while a diameter of the other 14 
FWDs is 30cm and the 49kN peak loading is applied during the test. The moduli from static 
back-calculation are presented in Figure 4(a). Since the vertical axes of Figure 4 are log scales, the 
back-calculated results appear to be nearly same for each parameter. However in the case of 
dynamic back-calculation, both layer modulus and the corresponding damping coefficients can be 
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estimated, which are presented in Figure 4(b) and (c). The moduli and the corresponding damping 
coefficients of FWD5 and FWD11 appear a little different from those of the rests. Estimated 
concrete modulus of this pavement is about 20,000MPa, which is smaller than the values we 
normally obtain at concrete pavement by back-calculation. 

In order to observe the differences in the results, the moduli from static and dynamic 
back-calculation are compared layer by layer in Figure 5 by using a normal scale. The dynamic 
back-calculation moduli from FWD5, FWD6 and FWD11 are apparently different. The 
differences in the moduli for FWD5 and FWD6 are most likely due to higher intensity of loading. 
The difference in the moduli for FWD11 is caused by erroneous deflection data in which D90 
deflection is found smaller than D150 deflection. It is also observed from Figure 5 that although 
the moduli of concrete and base show small difference between the results from both methods, the 
subgrade modulus by static back-calculation is much greater than that by dynamic 
back-calculation. The reason is that because of very short duration of FWD loading, deformation 
in subgrade due to impulsive loading is smaller than the deformation due to static loading of the 
same loading intensity. It is also found that when pavement response seems non-linear or measured 
deflection data contains some error, its effect appears more clearly on the dynamic 
back-calculation results than the static results.  

Figure 6 demonstrates comparison between measured and computed surface deflections after 
back-calculation. The figure for FWD5 shows that although measured and computed deflections 
agrees relatively well, little different behavior can be observed between the two. However all 
response curves for FWD8 are very similar, although matching of D150 deflections may not be 
good. As for FWD11, all computed responses do not coincide with measured ones, because the 
peak values of measured D90 and D150deflections are reversed in magnitude.  
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(a) RCCP Layer 

 
 

Figure 5  Layer-wise Comparison of Modulus 
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(b) M-30 Layer 
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(c) C-40 Layer 
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(d) Subgrade 

 
Figure 5  Layer-wise Comparison of Modulus (continued) 
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Figure 6 Comparisons between measured and computed deflections 
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5. CONCLUSIONS 
 
Static and dynamic back-calculation methods are briefly described above and the results obtained 
by both methods were compared. The following conclusions can be made: 
1. Not only layer modulus but also layer damping coefficient can be estimated by dynamic 
back-calculation 
2. More number of unknown parameters can be identified with less number of deflection sensors 
by employing dynamic back-calculation. 
3. Estimates by dynamic back-calculation tend to be smaller than those by static back-calculation. 
This trend is particularly conspicuous in the subgrade modulus. 
4. If dynamic back-calculation is conducted, effects of material non-linearity as well as erroneous 
deflection data are clearly appeared on back-calculated results. 
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